

Qualitätsgesicherte Untersuchungen eines Einstreuadditivs zur Ammoniakminderung in der Hähnchenmast

Lars Broer¹, Julian Markus¹, Kathrin Toppel²

Einleitung

Forderung

Die Neufassung der TA Luft (2021) fordert eine Minderung der Ammoniak-Emissionen (NH₃) für Masthähnchenställe mit Zwangsentlüftung zum Ausgangswert von 0,0486 kg TP-1 a-1:

- 40 % Minderung bei Stallanlagen ab 30 Tsd. Tierplätzen
- 70 % Minderung bei Stallanlagen ab 40 Tsd. Tierplätzen

Zielsetzung

- Alternative zu baulichen und teuren Maßnahmen (Abluftreinigung)
- Minderung der NH₃-Emissionen
- Erhalt / Förderung einer tierwohlorientierten Haltungsumwelt

Untersuchung

 Bewertung einer pH-Wert reduzierenden Einstreumaßnahme im Masthähnchenbestand

Minderungsmaßnahme / Einstreupflegemittel

• Einstreu: Strohpellet mit Additiv ImproBed® (Natriumhydrogensulfat)

- Natriumhydrogensulfat ist geruchslos, sauer, gut wasserlöslich und wirkt hygroskopisch
- Einstreumenge: 1,5 kg m⁻²
- Nachstreu nach Bedarf von bis zu 0,6 kg m⁻²
- Wirkung von Natriumhydrogensulfat durch pH-Wert-Reduzierung:

Wirkungsprinzip 1: Bindung von NH₃:

Abb. 1: Wirkung von Natriumhydrogensulfat

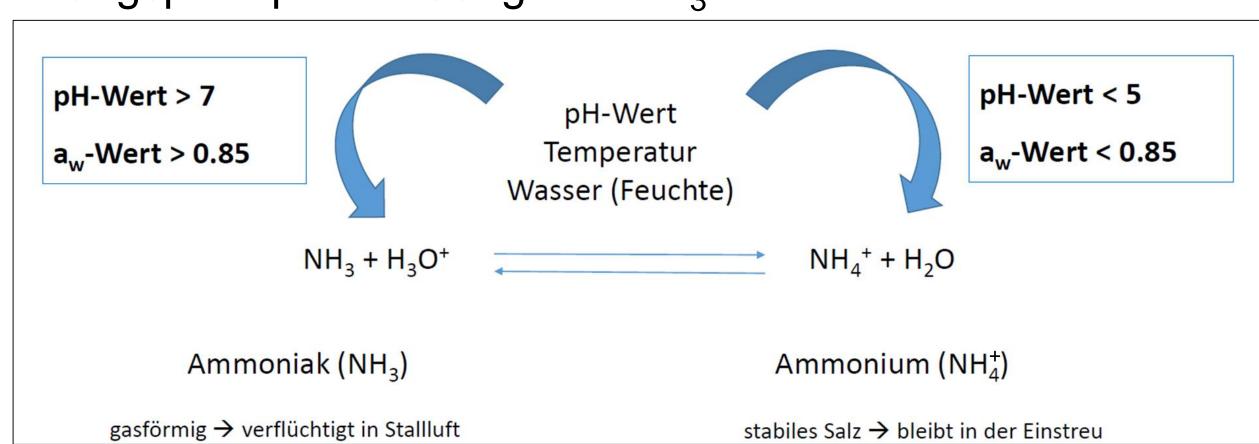
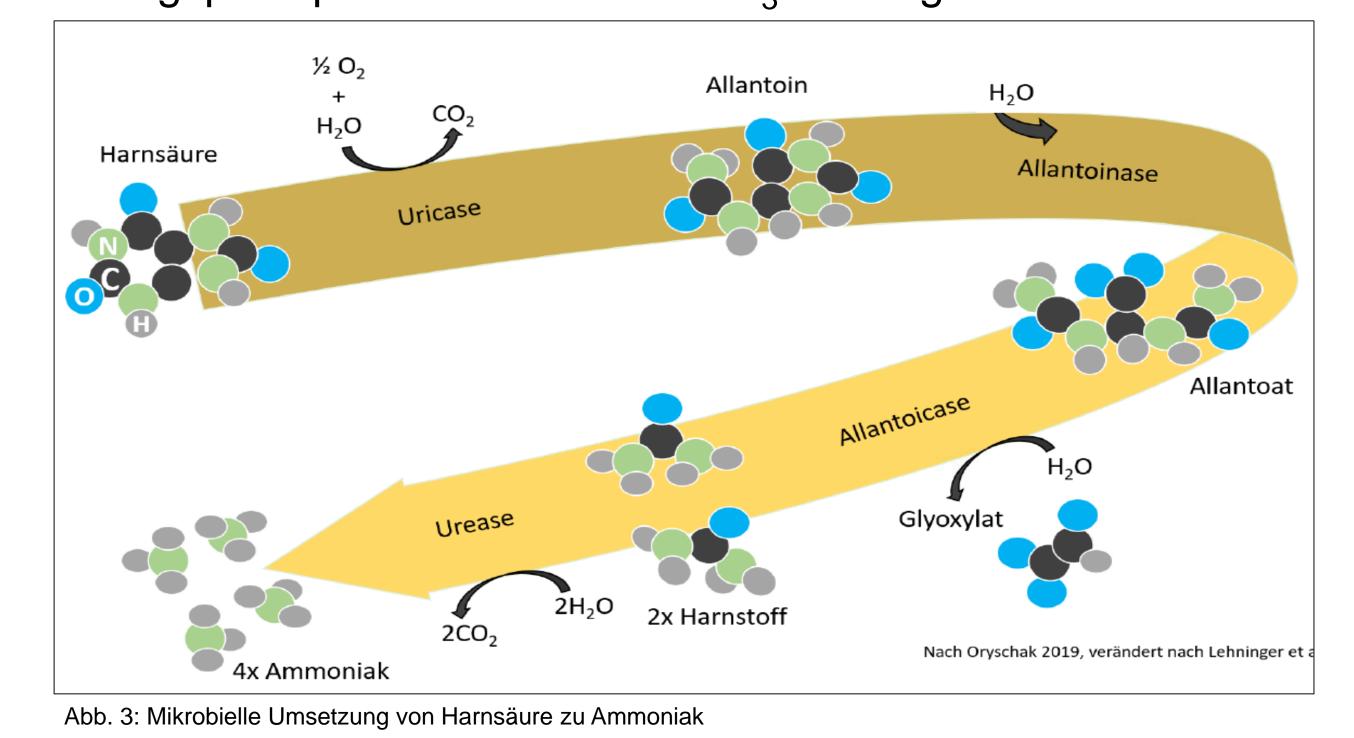



Abb. 2: Dissoziationsgleichgewicht Ammoniak und Ammonium

Wirkungsprinzip 2: Reduktion der NH₃-Bildung:

Methodik / Messdurchführung

- 4 konventionelle Hähnchenmastbetriebe (Schwermast 42 Tage)
- Stallgröße: 1.600 1.800 m² für 35.000 42.000 Tiere (Ross 308)
- Untersuchungszeitraum: 01/2023 bis ~ 02/2024
- 3 Mastdurchgänge je Betrieb (Sommer, Winter, Übergang)
- Ansatz mit mehreren Betrieben (mind. 4 Standorte) Vergleich mit Emissionsrichtwerten
- Kontinuierliche Gasmessungen (u.a. NH₃, CO₂, CH₄, N₂O) mittels FTIR-Messtechnik
- Wöchentliche Bonituren zur Bewertung der Einstreu
- Analysen der Einstreu während der Mastdurchgänge
- Beprobung der Mistmatratze aller Teilbereiche für die Nährstoffbilanzierungen

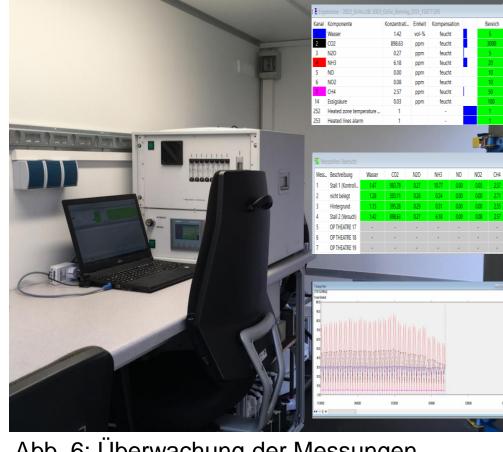


Abb. 5: Messtechnik

Abb. 6: Überwachung der Messungen

Ergebnisse

- Die Tiergesundheit der Herden war unauffällig
- Deutliche Senkung der NH₃-Emissionen durch die Ausbringung pH-Wert reduzierter Einstreupellets
- Niedrige NH₃-Konzentrationen bis zur Endmastphase gegenüber vergleichbaren Messungen ohne Einstreupflegemittel
- Die N/P-Bilanzierungen belegen einen deutlich geringeren Stickstoffanteil in der Gasphase

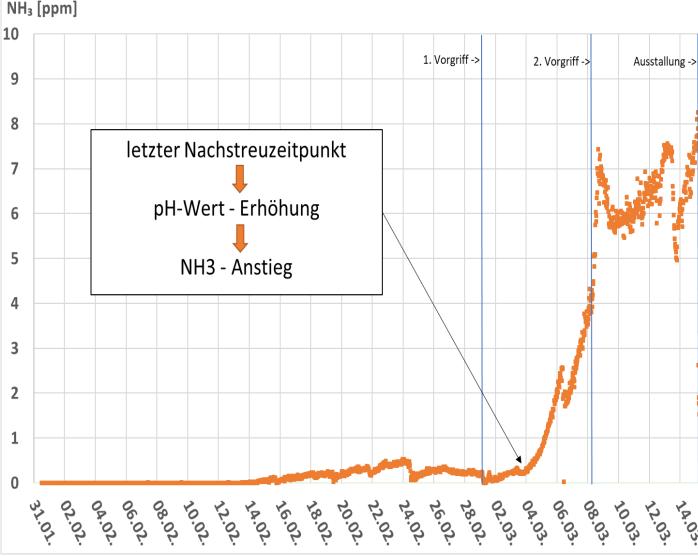


Abb. 7: Einstreu

Abb. 8: Einstallung

Abb. 9: Mistbeprobung

	Tab. 1: Nährstoffbilanzen				
	Bilanzierung	Einheit	Stickstoff	Phosphor	
	Input		N-Gehalt	P-Gehalt	
	Einstreu	kg	10,4	1,3	
	Futter	kg	4.228,8	630,7	
	Gas	kg	2,2	0,0	
	Tier	kg	50,2	6,7	
	Gesamt	kg	4,291,5	638,6	
	Output		N-Gehalt	P-Gehalt	
	Mist	kg	1.386,5	185,9	
	Gas	kg	39,8	0,0	
	Tier	kg	2.884,0	384,5	
	Gesamt	kg	4.310,2	570,4	
03.	Wiederfindung	%	100,4	89,3	

Abb. 10: Ammoniakverlauf eines Mastdurchgangs

Fazit

Um die neuen Anforderungen der TA Luft zu erfüllen, sollten unter Berücksichtigung der Wirtschaftlichkeit alle Möglichkeiten Minderung der NH₃-Emissionen ausgeschöpft werden. Die geprüfte Indoor-Maßnahme scheint eine praktikable ökonomisch und ökologisch sinnvolle sowie tierwohlorientierte Alternative zur Abluftreinigung darzustellen.

Ansprechpartner: ¹LUFA Nord-West

²Hochschule Osnabrück

Lars Broer E-Mail: Lars.Broer@lufa-nord-west.de

E-Mail: K.Toppel@hs-osnabrueck.de

Dr. Kathrin Toppel

Quellen:

- Li, H., C. Lin, S. Collier, W. Brown, and S. White-Hansen. 2013. Assessment of frequent litter amendment application on ammonia emission from broilers operations. J. Air Waste Ma. 63:442-452. - Toppel, K.; Kaufmann, F.; Schön, H.; Gauly, M.; Andersson, R. (2018): Effects of pH-lowering litter amendment on animal-based welfare indicators and litter quality in a European commercial

broiler husbandry. Poultry Science 0:1-9. DOI: org/10.3382/ps/pey489 - Toppel, K.; Kaufmann, F.; Schön, H.; Gauly, M.; Andersson, R. (2018a): Effects of pH-lowering litter amendment on animal-based welfare indicators and litter quality in a European commercial broiler husbandry. Proceedings of the 15th European Poultry Conference. 17th to 21st September 2018, Dubrovnik, Croatia. 227. ISBN 978-90-29157-0-9.