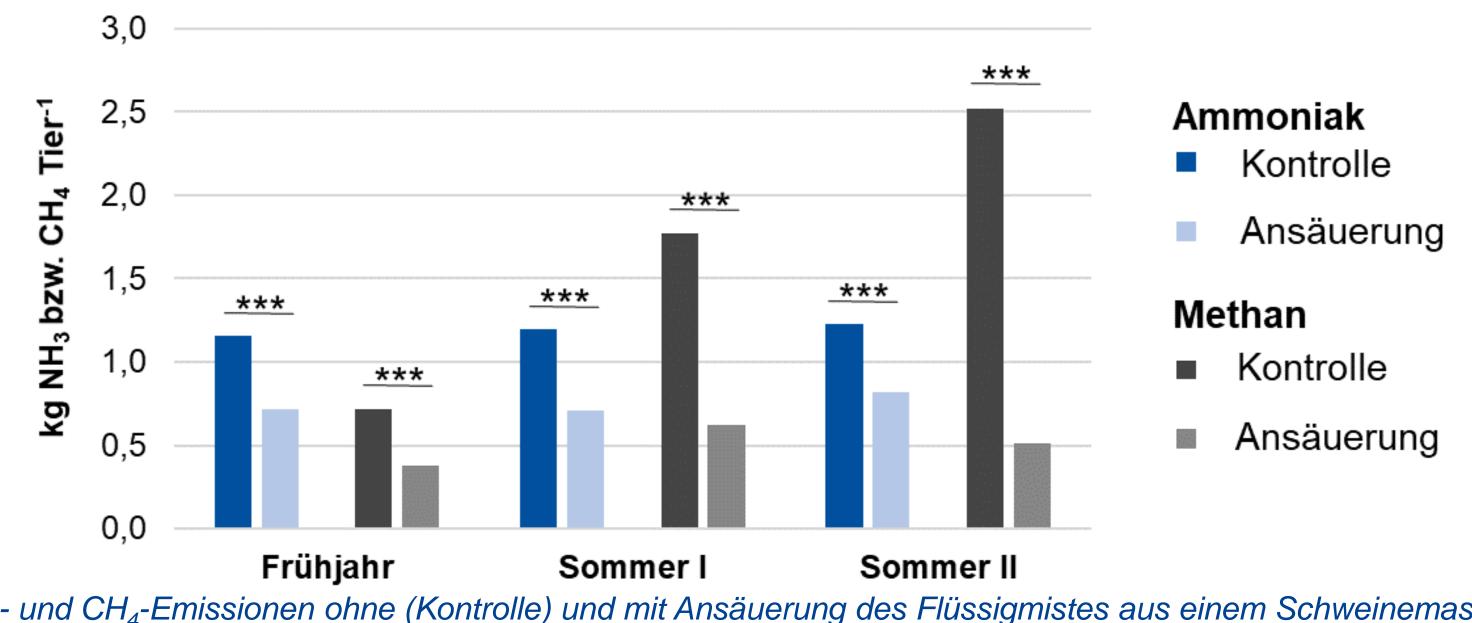

Signifikante Ammoniak- und Methanminderung durch stallinterne Flüssigmistansäuerung

V. Ebertz¹, M. Trimborn¹, J. Clemens², R. Hölscher³, W. Büscher¹

Zielsetzung

- Reduktion der Ammoniak- (NH₃) und Methanemissionen (CH₄) aus dem Flüssigmist
- Ansäuerung des im Stall lagernden Flüssigmistes durch Säurezugabe (Verschiebung des Ammonium/Ammoniak-Gleichgewichtes)
- Nachrüstbarkeit ohne Arbeits- und Tierschutz-Risiko
 - Einbau der Ansäuerungstechnik soll in bereits bestehenden Stallanlagen möglich sein



Material und Methode

- Campus Frankenforst, Universität Bonn
- Drei Mastdurchgänge
- Externer Prozesstank zur Ansäuerung
- Ansäuerung einer Teilmenge des Flüssigmistes mindestens zweimal wöchentlich (Ziel-pH-Wert: 5,5)
- Aufrühren des Flüssigmistes und Eindosierung der Säure im Prozesstank bei kontrollierter Belüftung
- Lagerung des kompletten angesäuerten Flüssigmistes unter dem Spaltenboden bis zum Mastende
- Landwirt hat keinen Kontakt zur Säure, da doppelwandiger Lagercontainer mit Online-Messsystem zur Erfassung des Füllstandes eingesetzt wird

Ergebnisse

- Ammoniak-Reduktion um ca. 40%
- Methan-Reduktion um ca. 67%
 - Verbesserung der Arbeitsbedingungen für den Landwirt und des Tierwohls
 - → Beitrag zum Umwelt- **und** Klimaschutz während der Lagerung (Stall & externes Lager) und Ausbringung des Flüssigmistes

NH₃- und CH₄-Emissionen ohne (Kontrolle) und mit Ansäuerung des Flüssigmistes aus einem Schweinemastabteil während dreier Mastdurchgänge, im Mastdurchgang "Frühjahr" wurde der Ziel-pH-Wert von 5,5 erst bei einem Tiergewicht von 74 kg erreicht, *** kennzeichnet signifikante Unterschiede (p<0.001)

rozesstechnik

Säurevorrat Säurevorrat Flüssigmist Rücklauf Flüssigmist Entnahme Flüssigmist Entnahme Flüssigmist Entnahme

Ausblick

- ca. 9,3 l bzw. 17 kg Schwefelsäure (96 %) je m³ Flüssigmist erforderlich
 - weitere Untersuchungen zur Reduktion des Säureverbrauches notwendig
 - neues Forschungsprojekt:

Separation und Ansäuerung nach Fällung von Flüssigmist aus Rinderställen

- Weniger Säureverbrauch durch Zugabe von Ca-Additiven zur Reduzierung des Carbonatpuffers möglich
- Einsatz in Rinderställen mit planbefestigten Laufbereichen und anschließender Lagerung des Flüssigmistes in externen Lagerbehältern

² SF-Soepenberg GmbH, Emil-Fischer-Str. 14, 46569 Hünxe

³ Hölscher + Leuschner GmbH & Co. KG, Siemensstraße 15, 48488 Emsbüren

