

Landwirtschaftskammer Niedersachsen

Bestimmung von Emissionsfaktoren bei unterschiedlicher Proteinversorgung von Mastschweinen

Julian Markus¹, Lars Broer¹, Dr. Ralf Kosch¹, Andrea Meyer², Wolfgang Vogt², Stefan Sagkob²

Einleitung

Der Emissionsfaktor für eine stark N-/P-reduzierte Fütterung in der Schweinemast wurde in der novellierten TA Luft (2021) mit 2,91 kg NH₃ je Tierplatz (TP) und Jahr festgelegt. Dieser Wert wurde von dem in der TA Luft (2002) existierenden Wert (3,64 kg NH₃ TP⁻¹ a⁻¹) abgeleitet und entspricht einer Reduzierung von 20 %.

Die LWK Niedersachsen erfasst im "Transparenten Stall" der Leistungsprüfungsanstalt (LPA) Quakenbrück die Ammoniakemissionen von Mastschweinen bei weiterer Absenkung der Rohproteinversorgung (DLG, sehr stark reduziert).

Versuchsaufbau

Abb. 2: "Transparenter Versuchsstall"

Abb. 3: separate Abluftkamine der Abteile

13,5

Die

Fütterung verringerte die

Emissionsrate auf

- Konventioneller Schweinemaststall mit vollperforierter Boden und darunterliegender Güllelagerung
- 5 baugleiche, zwangsbelüftete Abteile mit je 40 Tieren
- 2 Futtergruppen mit unterschiedlicher Proteinversorgung

Tab. 1: Futterzusammensetzungen			Kontroll- und versuchsgruppe N-/P-reduziert			Versuchsgruppe Sehr stark N-/P-reduziert				
			N-/F-reduziert			Selli Stark N-/P-reduziert				
	Mastabschnitt	kg	28-40	40-70	70-122	28-40	40-65	65-90	90-12	

16,0

16,5

 Fütterung: 1 Futterstation je Bucht mit Einzeltiererkennung (ad libitum), Trockenfütterung "sehr stark N-/P-reduzierte"

17,0

• 4 Mastdurchgänge (inkl. Abteilwechsel)

Ergebnisse

- Deutliche Ammoniakreduktion in allen 4 Mastdurchgängen bei der Versuchsgruppe
- Die höchste Minderung wurde unter Sommerbedingungen erzielt
- Sehr gute Übereinstimmung bei der N-/P-reduzierten Fütterung mit dem Referenzwert der VDI 3894
- Durch die "sehr stark N-/P-reduzierte Fütterung" konnte der Emissionsfaktor um weitere 12% auf 2,56 kg NH₃ TP⁻¹ a⁻¹ gemindert werden
- Die Proteinreduzierung hatte keinen negativen Einfluss auf die biologischen Leistungen der Tiere, den Wasserverbrauch oder Gülleanfall
- Je 1 %-Punkt weniger Rohprotein im Futter sanken die NH₃-Emissionen im Durchschnitt um 12,3 %

Abb. 4: Abteil mit Buchtenaufteilung

Abb. 5: Abluftkamin mit Sensoren

Methoden

Rohprotein

- Kontinuierliche Luftvolumenstrommessung über kalibrierte Differenzdruckmesssysteme
- Kontinuierliche Bestimmung der Gaskonzentrationen (NH₃, CO₂, CH₄, N₂O) mittels FTIR-Messtechnik unter normkonformen Messbedingungen
- Gewichtung der Ammoniakfrachten der Einzeldurchgänge anhand des Masttages und der Außentemperatur für gleichmäßige Abdeckung der Jahreszeiten und Bestimmung der daraus resultierenden Emissionsraten
- Gleichmäßige Abdeckung aller Jahreszeiten durch kontinuierliche Messungen über vier komplette Mastdurchgänge
- Berechnung der Emissionsraten unter der Berücksichtigung von 17 Tagen Leerstand pro Jahr
- Validierung der Ergebnisse durch Stickstoff- und Phosphorbilanzen
- Schlachtkörperauswertungen für die Bestimmung des Ansatzes im Tierkörper

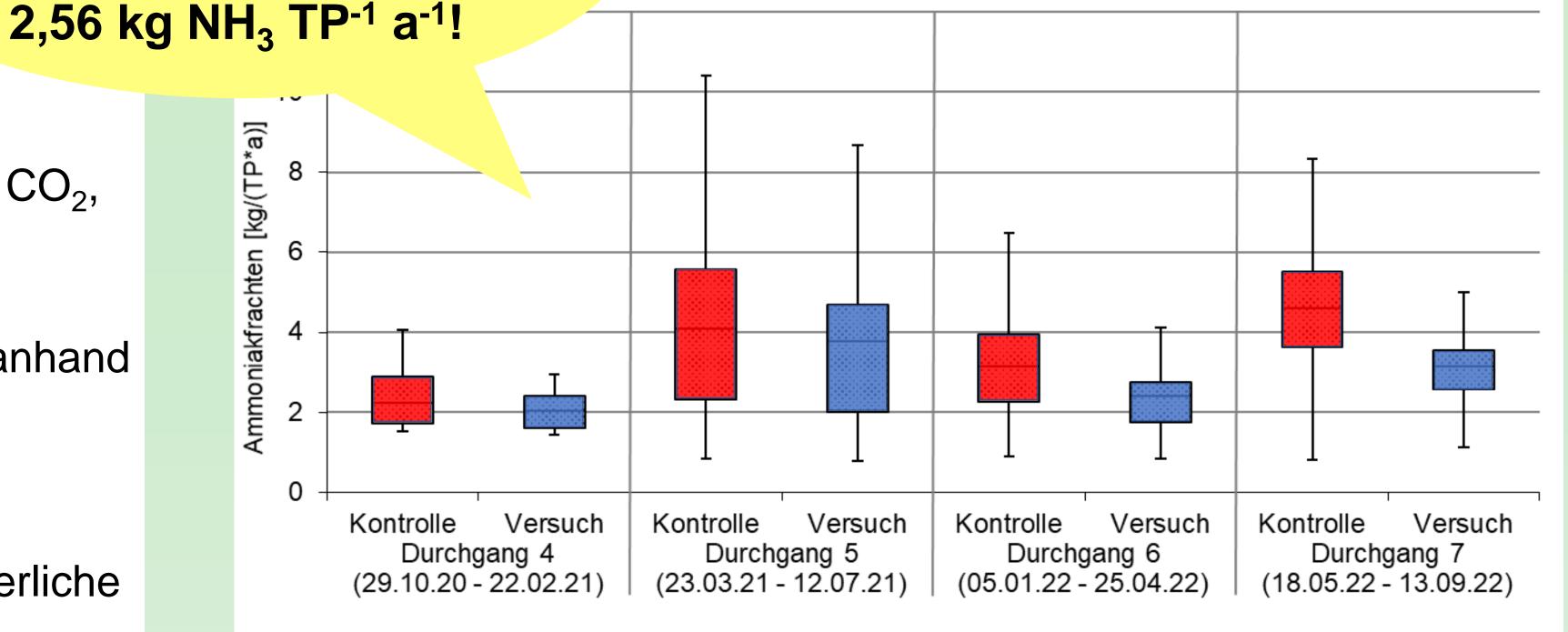


Abb. 6: Ammoniakfrachten auf Basis der Stundenmittelwerte der Versuch- und Kontrollgruppen der vier Mastdurchgänge

Tab. 2: NH₃-Emissionsraten der unterschiedlichen Proteinversorgungen

Emissions- raten	Einheit	konserv. Fütterung	N-/P- reduziert	stark N-/P- reduziert	sehr stark N-/P- reduziert
TA Luft / VDI ¹	kg TP-1 a-1	3,64	3,28	2,91	_
Messungen	kg TP-1 a-1	-	3,31	_	2,56

¹ VDI 3894 (2011)

Fazit

Eine sehr starke Absenkung der Rohproteingehalte in der Mastschweinefütterung kann die Ammoniakemission reduzieren, ohne dass die Leistungsdaten der Tiere beeinträchtigt werden.

Ansprechpartner:

¹LUFA Nord-West

²Landwirtschaftskammer Niedersachsen

Juilan Markus E-Mail: Julian.Markus@lufa-nord-west.de

E-Mail: Andrea.Meyer@lwk-niedersachsen.de

Andrea Meyer

Veröffentlichungen:

- KTBL (2023): Emissionen der Tierhaltung 2023 – erheben, beurteilen, mindern. Darmstadt, Kuratorium für Technik und Bauwesen in der Landwirtschaft e. V. (KTBL)

- Landwirtschaftskammer Niedersachsen (2023): Leistungs- und Qualitätsprüfungen sowie Projekte in der Tierhaltung – Jahresbericht 2022/2023